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The criterion of linear numerical stability of the combined leap-frog Dufort-Frankel scheme 
for advectivediffusive problems in two dimensions is 

2 2 
$+” At’< 1, 

KV 

where Ax and dq’ are the grid spacings in the x and y directions, U and V the velocity 
components, K, and K~ the diffusion coefficients, and At the time step. Although this stability 
requirement does not depend explicitly on the magnitude of the diffusivity (only on the ratio 
of the diffusivity coefficients), the presence of the diffusive terms renders the criterion more 
severe than the one obtained for purely advective problems [(I Ul/dx + 1 Vl/Ay) At < 11. Only 
in one dimension are both criteria identical. Therefore, at more than one dimension, the 
unconditionally stable scheme (Dufort-Frankel) combined with the conditionally stable 
scheme (leap-frog) leads to the more restrictive stability condition. The maximum allowable 
time step occurs when the grid spacings in both directions have the same ratio as the square 
roots of the diffusivity coefftcients. 

A new method is presented for discussing the stability of a finite-difference scheme without 
actually solving for the modulus of the amplification factor. This method is also extended to 
more general cases. 

1. INTRODUCTION 

The criterion of linear numerical stability can be determined by the von Neumann 
method rather easily for various simple schemes including either advection or 
diffusion, for instance. As a result, it is well known that the leap-frog scheme for 
purely advective problems needs to meet a CFL condition, and that the Dufort- 
Frankel scheme for purely diffusive problems is unconditionally stable. When a 
combination of such simple schemes is employed in practical usage, the rule of thumb 
is to meet the requirements of every scheme separately. However, this rule has no 
mathematical foundation, and one must proceed with caution. The purpose of this 
paper is to show, as an example, that the combined leap-frog Dufort-Frankel scheme 
widely used for advectivediffusive problems has in fact a more stringent stability 
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criterion than either scheme separately. Although the new stability conditions are not 
dramatic in general, it may be important in particular situations such as the 
modelling of geophysical fronts (small grid size in one direction and large velocity in 
the perpendicular direction). 

In his treatise on computational fluid dynamics, Roache [5, p. 61] is incorrect.’ He 
states without proof that, since the Dufort-Frankel scheme is unconditionally stable 
and that it does not affect the numerical stability of the leap-frog scheme at one 
dimension, it should also be so at two dimensions. Schumann [6] correctly states that 
the combination of schemes leads to more severe conditions but fails to extract the 
analytical expression of the appropriate criterion, invoking the excuse of “insurmoun- 
table mathematical difficulties.” Indeed, the mathematics of this problem are not 
straightforward, and, in view of this difficulty, the stability studies of the combined 
schemes [ 1, 3,4] have been limited to one-dimensional problems. Because, at one 
dimension, the Dufort-Frankel scheme does not affect the stability of the leap-frog 
scheme, the authors of [ 1,4] fail to mention any unexpected added constraint that 
one can encounter at two or more dimensions. The purpose of this paper is to 
demonstrate (i) that it is possible to determine the proper criterion by analytical 
methods, and (ii) that this criterion is more severe in the presence of diffusion in two 
dimensions as it was already anticipated in [6]. 

A last section generalizes the methodology used here to all cases involving a 
complex quadratic equation. The general criterion, which is then obtained, is found to 
be nothing but a particular case of a theorem proposed by Miller [2]. Miller’s work 
demonstrates how a series of criteria (that all roots of a polynomial be inside or on 
the unit circle) can be obtained in a systematic approach by reducing the polynomial 
to one of a degree less in a recursive manner. However, Miller did not explicitly 
formulate the criterion corresponding to a quadratic equation. The last section thus 
provides this formulation as well as an independent and inductive way to obtain it. 

2. PROBLEM AND SOLUTION 

The Problem 

The two-dimensional advectivediffusive problem under consideration is 

where T is the scalar transported and diffused, U and V are the uniform velocity 
components, K, and ICY are the diffusivity coefficients in the x and y directions, 
respectively. The discretized version of this equation using a leap-frog scheme for the 
advection terms and a Dufort-Frankel scheme for the diffusion terms can be written 
as 

’ In the second edition of his book (1976), Roache noted his error 
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+s(r,+,+r,p,-r.“-T”‘). 

where TTk = T(xj, y,, t,,). The obvious subscripts have been deleted for clarity. Since 
this linear equation has a solution of the form TJk = T,G” exp[(jm Ax + kl Ay)], one 
obtains a quadratic equation for the (complex) amplification factor, G 

(1 +K,+K,)G*-~(K,c~s~+K~c~s~-~~A sina-iBsinp)G 

- (1 - K,Y - KY) = 0, (1) 

where K, = 2u, At/Ax2, K, = 25 At,lAy2, A = UAt/Ax, B = VAtlAy, a = m Ax, and 
p = I Ay. The angles a and /I vary between --71 and rr depending on the wavenumbers 
m and 1. 

The von Neumann necessary stability criterion states that the scheme is stable if 
) G / < 1 for all a and p, and unstable otherwise, This leads to an inequality involving 
K,, K,, A, and B, hence U, V, ICY, K~, Ax, Ay, At. Since the solution of (1) involves 
taking the square root of a complex number, the problem immediately leads to 
mathematical difficulties. An alternative method of solution is followed. The solution 
to the above problem is greatly facilitated by the construction of a positive-definite 
function. 

DEFINITION. 

+ (A sin a + B sin p)‘, where S = K, + K,. (2) 

THEOREM I. The numerical scheme is stable if E < 1 for all a and p, and 
unstable otherwise. In other words, the expression E conveniently replaces the more 
complicated expression / G / in the stability discussion. 

Proof. The complex variable G is written as R exp i6, R being its modulus. 
Equation (1) is then split into its real and imaginary components. If X = (K, cos a + 
K, cos /3)/S and Y = A sin a + B sin /3, these are 

(l+S)R’cos28-ZSXRcosB-2YRsinC(I-S)=O, 

(1 +S)R2sin20-2SXRsinB+2YRcosB=O. 



230 BENOIT CUSHMAN-ROISIN 

Solving for X and Y and forming E =X2 + Y2, one obtains 

EJR2+1)2+R4-1 
4R2 2R2 

Two cases are possible, either S < 1 or S > 1. One can concentrate only on the case 
S < 1, since the other case is obtained by substitution of S by S’ and 0 by n/2 - 0. 
For S < 1, the extreme values of E over the range of 0 are 

E 
(R2+1)f(R2-1)/S 

max = 2R 

E 
(R2+ l)+S(R’- 1) ’ 

min = 2R I. 

One observes that for R = (1 - S)/(l + S) and R = 1, E,,, = E,i, = 1, that both 
E max and Emin are less than one for (1 - S)/(l + S) < R < 1, and that both E,,, and 
Emin are greater than one outside of that range. 

For S > 1, the results are similar except for S being replaced by S - i. Both cases 
can be summarized as follows (see Fig. 1): E = 1 for R = 11 - S\/l 1 + SI and R = 1, 
E < 1 for R between these values, and E > 1 for R outside that range. 

On the other side, the ratio of the last term to the first term of Eq. (1) implies that 
the product of the two roots, G, and G,, of that equation equals -(l - S)/(l + S), 
i.e., 

This implies that, when the modulus of one root is less that ( 1 - S\/j 1 + S/, the 
modulus of the other ought to be greater than unity, and the scheme is numerically 
unstable. Since R is the modulus of either root, one concludes that the regions of 
stability and instability correspond exactly to the regions where E is less than or 
greater than unity, respectively. Theorem I is thus proven. 

E=l E=l 

I ESEmin>t i E<E,,,<1 i E>Emin>l 

I 
I 

I t 
0 
’ unstable I&\ stable 1 unstable 

R= IGI 

FIG. 1. Summary of results of Theorem 1. 
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THEOREM II. The criterion 

g+g<-$ 

x Y 

(3) 

is the necessary and sufjcient condition under which E is less than or equal to unity. 
In conjunction with Theorem I, this theorem establishes that (3) is the stability 
criterion of the numerical scheme. 

Proof. The extrema of E over the range of values of a and b are reached for 
aE/aa = aslap = 0, i.e., 

X+sina-YAcosa=O, 

1%sinp- YBcosp=O, 

where X and Y are functions of a and /I defined above. Considering these equations 
as a 2 x 2 linear system for the unknowns X and Y, one concludes that, if the deter- 
minant of that system is nonzero, X = Y = 0. This solution (if it exists) corresponds 
to the minimum of the positive-definite expression E =X2 + Y*. The maxima, and 
possible other minima, of E are thus obtained when the system determinant vanishes 

This constraint between a and j3 corresponds to a curve in the (a,/I) plane which can 
be described parametrically as 

tan a = $- 1, 
x 

tanb=+& 
4 

where the parameter L can vary from -co to +a~. Along this curve, the expression E 
takes the form of a function of A2 

Kx 
2 

(1 +A212/K:)1/2 + 
KS 

(1 + B*A’/K;)“* 1 
A *PC B */KS 

(1 +A*1*/K;)“* + (1 +B*i*/K;)“* 

End values are E(0) = 1 and E(W) = (IAl + lB/)‘. Extrema of E are found for 
dE/dL* = 0. This occurs when 
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This equation can be rewritten in the form ai* + b = 0 and thus has at most one 
positive root for A’. This implies that E(A*) either varies monotonically from 1 to 
(IA 1 + lB I)’ or has one extremum between these values. 

The Taylor expansion of E(A*) about A* = 0 is 

Two cases are possible. Either A */K, + B*/K, - l/S is greater than zero or not. In 
the former case, E is greater than unity in the vicinity of 1’ = 0 (i.e., in the vicinity of 
a = /? = 0 or frc), and thus inequality (3) is a necessary condition to ensure E < 1. In 
the latter case, E decreases and is less than unity in the vicinity of A* = 0. By virtue 
of the previous result, E either decreases monotonically or reaches a minimum. 
Therefore, to determine whether E can be greater than one, one ought to compare its 
value for 1’ = 00 to unity. This value can be written as 

E(a) = (IA I + IBID’ 

=(K,+K,) ($+$)- ($l’+~B*-2~Al~B~) 

=l+S ($+$;)-[(~)“2,A,-(~)“2,B,]2 

and is therefore less than one when 

i.e., when (3) is met. Therefore, inequality (3) is also a sufficient condition to ensure 
E< 1. 

Collecting all the above results, one concludes that E is always less than or equal 
to one for all values of a and /I provided that (3) is met, and that there exist values of 
a and /? in the vicinity of a = ,fl = 0 and fn for which E is greater than one provided 
that (3) is not met. Hence, Theorem II is proven. 

3. DISCUSSION 

Theorems I and II establish that (3) is the stability requirement of the combined 
leap-frog Dufort-Frankel scheme. With the original notation, this criterion imposes 
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Generalized to three dimensions, the criterion is 

)i At’< 1. 

It is important to note that this inequality does not depend explicitly on the 
magnitude of the diffusivity coefficients but only on their ratio. If both diffusivities 
are equal, the criterion becomes 

+& (U’f V’)At’< 1. 

However, the influence of the diffusive terms in the problem is not absent, for the 
stability criterion of the purely advective problem is different. Indeed, for K., = K? = 0, 
Eq. (1) governing the amplification factor becomes 

G2 + 2i(A sin a + B sin p) G - 1 = 0, 

and the moduli of its roots are not greater than one if and only if (A sin (1 + 
Bsin/I)‘< 1 for all a and/I. Thus, IAI+IBI< 1 or 

(5) 

Criterion (5) is the stability requirement for the leap-frog scheme alone. It is the 
criterion upon which users rely who follow the rule of thumb (meet the requirements 
of every scheme separately). The correct criterion in combination with a Dufort- 
Frankel scheme, i.e., (4), is somewhat more restrictive. Indeed, 

= (!$!!!!)‘&+ [ (:)I’*!$ ($2~]2A~” 

The difference is particularly significant if one chooses K, = K, and a small grid size 
in the direction perpendicular to the direction of the largest velocity component. This 
situation may arise in the study of geophysical fronts where the velocity is almost 
perpendicular to the direction of maximum gradients. In such case, one has to 
compromise between either a small grid size in the other direction or a small time 
step. 

The stability loss resulting from this added constraint can also be illustrated 
geometrically in a (A, B) plane (Fig. 2). In this plane, the criterion obtained in the 
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FIG. 2. Geometrical interpretation of the criteria with and without diffusive terms (ellipse and 
square, respectively). Regions of stability lie inside these curves. Since the ellipse is situated inside the 
square, the stability criterion is more restrictive in the presence of diffusion than in its absence. 

absence of diffusivity, ]A 1 + ]B 1 < 1, is represented by a square of side 2 I” and 
oriented at 45” ‘with respect to the coordinate axes. The region of stability lies inside 
the square. In the presence of diffusivity, the criterion is (3) and is represented by an 
ellipse lying inside the square and tangent to its four sides. The eccentricity of the 
ellipse varies with the ratio K,/K,, i.e., with K,/K, and Ax/&. The region of stability 
lies inside the ellipse. Since the ellipse is always situated inside the square, criterion 
(3) is the most stringent of the two. The area outside the ellipse but inside the square 
represents the stability loss due to the presence of diffusivity, although the magnitude 
of the diffusivity coefficient does not intervene. This area is minimum when the ellipse 
becomes a circle (rc,/dx* = rcY/dy2). From this observation stems a recommendation: 
to minimize the stability restriction resulting from the combination of leap-frog and 
Dufort-Frankel schemes, it is best to choose grid sizes of both directions in the ratio 
of the square roots of the diffusivity coefficients. 

Finally, it should be noted that, in one dimension, criteria (4) and (5) are identical. 
This explains why the one-dimensional studies of the combined schemes [ 1,4] do not 
mention the possibility of additional constraints resulting from the combination of 
schemes. 

4. GENERALIZATION OF THE METHOD OF SOLUTION 

This section presents the extension of the above methodology to more general cases 
for which the amplification factor G is given by the quadratic equation 

(a + id) G2 + (b + ib’) G + (c + ic’) = 0, (6) 

where a, a’, b, b’, c, and c’ are all real coefficients depending on some angles 
(a, p,...). The problem is to determine the structure of an expression E, formed with 
these coefftcients, which is less than or equal to one when the moduli of both roots 
for G are less than or equal to one, and is greater than one otherwise. In other words, 
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one is seeking a function which possesses the same properties as / GI and, yet, has a 
simpler expression. Such function is constructed in the first part of this section, while 
the second part is devoted to the establishment of its properties (Theorem III). 
Finally, the third part treats particular cases. 

Construction of the Adequate Function 

In view of its desired properties, the required expression must, at least, be equal to 
unity when the modulus of the amplification factor, 1 G/, is also unity. Hence, one is 
seeking a mathematical constraint between the coefficients of (6) which must hold 
when j GI is one. Equation (6) can be written as 

(a + ia’) G + b + ib’ + (c + ic’) G-’ = 0, (7) 

and, with G = exp(i0) = cos 0 + i sin 8, G-’ = exp(-8) = cos 0 - i sin 19, can be split 
into its real and imaginary components. These are 

(a+c)cos8-(a’-c’)sine=-6, 

(a’ + c’) cos 0 + (a - c) sin 0 = -b’. 

This linear system for the unknowns cos B and sin 0 has a unique solution when its 
determinant 

A=A*-C*=(A+C)(A-C), 

is nonzero. In what follows, A and C denote the moduli of a t ia’ and c + ic’, respec- 
tively. The particular case A = C (,4 = 0) is discussed at the end of the section. As 
long as A differs from C, one can solve for cos B and sin 8, and then form the 
combination cos* B + sin* 0 to eliminate 8. The result is 

1 =$- lb@ -c> + b’(a’ - c’)12 + -$ [b(a’ + c’) - b’(a + c)12. 

A potential candidate for the desired expression which must be equal to one when 1 G I 
is unity is thus 

E = $- [b(a - c) t b’(a’ - c’)]* + --$ [b(a’ t c’) - b’(a + c)]*, 63) 

where A = (a* + a’*) - (c’ + c”) = A* - C*. If a’ = c’ = 0, this expression becomes 

E= (-&)‘+ (Aj2. 
Miller [2] devised an algorithm to derive the necessary and sufficient conditions 

under which all roots of any given polynomial fall inside or on the unit circle in the 
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complex plane. His algorithm is based on a systematic reduction to polynomials of 
lesser degrees. From any polynomial of degree n 

f(G) = t ujGj, 
.i=o 

one can form a reduced polynomial of degree n - 1 

f,(G) = & 2 [a,aj - aoE,ej] G’. 
1-O 

Iff(G) is now quadratic as in (7), thenf,(G) is linear 

f,(G) = (A2 - C’) G + (a - iu’)(b + ib’) - (c + ic’)(b - ib’), 

and its only root is easily determined. Expression (8) is then found to be nothing but 
the modulus of that root. 

THEOREM III (A Generalization of Theorem I). For C < A, the expression E 
defined by (8) is less than one when both roots of (6) have moduli less than one, is 
equal to one when either root of (6) has a modulus equal to one, and is greater than 
one zf one of the roots of (6) has a modulus greater than one. In other words, the 
numerical scheme leading to (6) is stable as long as C < A and E < 1 for all values of 
the variable angles. (The cases C = A and C > A are treated separately afterward.) 

Proof. If IGI=R, G=Rcosi3+iRsinO, G-‘=RP’cosO-iRP’sinO, the real 
and imaginary parts of (7) become 

b=- (aR +G) cosO+ (a/R-g) sine, 

b’=- (a/R +g) cosO-- (aR -G) sine. 

Replacing b and b’ by the above expressions into the definition (8) of E: one obtains 

+$(A*R-$)(I-$)(( a’c - ac’) sin 28 - (UC + a'~') cos 24. (9) 

One verifies immediately that the above expression reaches the value one when R = 1 
and R = C/A, i.e., when the modulus of either root of (6) is equal to unity. The values 
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of E for other values of R are discussed based on the extremal values of E with 
respect to 0. These extrema are reached for 

ac + u’c’ a’c - ad 
cos28=& 

AC ’ 
sin 28 = --E 

AC ’ 
&=il, 

and can be expressed as 

E*= 1 + CR’- W2R2-C2) 

(A +&C)‘R’ ’ 

From this expression, it is evident that E* < 1 for C/A < R < 1 and E * > 1 
otherwise, regardless of the value of E (+l or -1). This implies that inside the 
interval [C/A, 11, the maximum value of E and hence all values of E are less than or 
equal to unity, while outside that interval, the minimum value of E and hence all 
values of E are greater than one. 

Since the two roots of (6) are such that the product of their moduli is equal to C/A 
and less than one, both moduli are less than one if either one is less than one and 
greater than C/A (i.e., the other less than one). This final remark in conjunction with 
the previous result establishes the theorem. 

Particular Cases 

In the case A = C, the two roots of (6) have a product whose modulus equals one. 
Hence, both moduli are no greater than unity if and only if they are each equal to 
one. When this is the case, Eq. (6) can be written as 

Aekt@’ + Bei” +Ae”Y-“’ = 0, 

where a + iu’ = A exp(ia), b + ib’ = B exp($), c + ic’ = A exp(iy), and G = exp(i8). 
It can also be expressed as 

B _ _ eiCa+B-4) + ei(y-O-B), 

A 

I.e., the real, negative number -B/A must be equal to the sum of two complex 
numbers of modulus one. This implies 

and 

2/I-a - y=O or 2n, 

B,<2A. 

Therefore, unless these two conditions are met for all values of the variable 
parameters of Eq. (6), the scheme is unstable. 

Finally, in the case C > A, there is always at least one root of (6) which has a 
modulus greater than one. And thus, if there exists at least one combination of 
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parameters in Eq. (6) which leads to C > A, the scheme that led to that equation is 
unconditionally unstable. 

The above theorem is a particular case of a much more general theorem stated in 
[2], where Miller establishes that a polynomial,f(G), of any degree has all its roots 
inside or on the unit circle if and only if either (i) 1 a,/ < ]a, / and f,(G) has all its 
roots inside or on the unit circle, or (ii)f,(G) = 0 andS’(G) has all its roots inside or 
on the unit circle. The above proof of Theorem III demonstrates proposition (i) in the 
case when f(G) is quadratic since the modulus of the only root of f,(G) is the 
expression E, while the treatment of the particular case A = C covers proposition (ii). 

The majority of numerical schemes leads to quadratic equations for the 
amplification factor, G. Therefore, although Miller’s theorem is very general, it was 
felt necessary to state explicitly which criteria have to be met in the particular 
quadratic case, and to provide a straightforward proof for this particular case. 

5. CONCLUSIONS 

The mathematical difficulty inherent in the stability study of the mixed leap-frog 
Dufort-Frankel numerical scheme for advective-diffusive problems is overcome by 
the definition of a certain positive-definite expression, not equal to, but, conveniently, 
replacing the modulus of the amplification factor. The results demonstrate that, in 
two dimensions, the scheme must obey a condition more restrictive than the one 
which would result from the sole leap-frog scheme ((4) instead of (5)). Although the 
stability loss results from the presence of diffusive terms, the condition does not 
depend explicitly on the magnitude of the diffusivity coefficients, but only on their 
ratio. To minimize the stability restriction, it is recommended to choose grid spacings 
in both directions in the same ratio as the square roots of the diffusivity coefficients. 
It is also noted that, in one dimension, the presence of diffusion does not affect the 
stability criterion resulting from a leap-frog scheme alone. 

Finally, for all cases when the amplification factor can be given by a complex, 
quadratic equation, a general expression of the positive-definite expression is derived 
and its properties are studied. It is also shown how the same expression results from 
Miller’s algorithm [2]. This extension of the methodology should facilitate the study 
of various combined schemes whose stability has not yet been rigorously established. 
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